THz-conductivity of CVD graphene on different substrates
نویسندگان
چکیده
Optoelectronic properties of CVD graphene are characterized over a wide frequency range: THz, IR, visible and near-UV. We used Raman spectroscopy to characterize the synthesized graphene films. All graphene layers were deposited on various substrates, some ones transparent or flexible, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), quartz and silicon. Transmission Terahertz time-domain spectroscopy (THz-TDS) method, in the range from 100 GHz to 3 THz, is used to analyze the transmittance, sheet conductivity and attenuation of graphene and the complex refractive index of substrates. From IR, near-UV and visible spectroscopy we obtained the transmittance of the substrate and the sample at those frequency ranges, and we deduced the graphene transmittance on each substrate. We found that it is close to 97% in most cases.
منابع مشابه
Transmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملAC conductivity parameters of graphene derived from THz etalon transmittance.
THz frequency-domain transmittance measurements were carried out on chemical-vapor-deposited (CVD) graphene films transferred to high-resistivity silicon substrates, and packaged as back-gated graphene field effect transistors (G-FETs). The graphene AC conductivity σ(ω), both real and imaginary parts, is determined between 0.2 and 1.2 THz from the transmittance using the transmission matrix met...
متن کاملNonlinear THz conductivity dynamics in P-type CVD-grown graphene.
We report strong THz-induced transparency in CVD-grown graphene where 92-96% of the peak-field is transmitted compared to 74% at lower field strength. Time-resolved THz pump/THz probe studies reveal that the absorption recovers in 2-3 ps. The induced transparency is believed to arise from nonlinear pumping of carriers in graphene which suppresses the mobility and consequently the conductivity i...
متن کاملHigh-field terahertz response of graphene
We investigate the response of multi-layer epitaxial graphene and chemical vapor deposition (CVD)-grown single-layer graphene to strong terahertz (THz) fields. Contrary to theoretical predictions of strong nonlinear response, the transmitted fields exhibit no harmonic generation, indicating that the nonlinear response is limited by fast electron thermalization due to carrier–carrier scattering....
متن کاملProposal for the Undergraduate Research Award Title of the Activity : Controlled Growth of Graphene by Chemical Vapor Deposition
Graphene, firstly isolated in 2004, is a new type of carbon materials, which contains a singleor few-layered sheet of Sp2-bonded carbon atoms. This special atomic structure gives graphene rich physical properties and wide potential applications. It has excellent electrical, mechanical, thermal and optical properties and has wide applications in nanoeletronic devices, transparent conductive film...
متن کامل